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ACTION OF AN EXPLOSIVE PLASTIC WAVE ON A PLATE

R. G. Yakupov ' UDC 531.391.539.371

The action of a transient loading on an infinitely elastic plate, freely covering the surface of
an ideal compressible liquid, was discussed in [1-3], A review of work on the dynamics of a
plate under the action of a transient loading is given in [4],

The motion of a rectangular plate of finite dimensions is considered, under the action of a plastic, plane,
explosive compression shock wave, incident at an angle. The plate is the side of a rectangular cavity filled
with an ideal compressible liquid, The cavity is in a dense medium (earth) and is bounded by rigid immovable
walls, In this same medium, at a distance of nye and at an angle o to the surface of the plate, a plane layer
of an explosive charge with thickness 2q is detonated (Fig. 1), wheren, = (z cos a)/a is the dimensionless
distance, The explosive charge, when detonated, is converted instantaneously into gas at high pressure without
change of volume, as a result of which an initial pressure p, is applied to the surface of the medium AB, which
causes the formation in the medium of a plastic compression shock wave. The velocity of the front and the
parameters of motion of the medium are known (determined by a computational or experimental method [5, 6]).

It will be assumed that the diagram of compression of the medium is described by a power law and has
an asymptote, corresponding to the pressure, which tends to infinity. Then the pressure at the front of the wave
is determined by the formula {5]

Py = Ci{ne — y)*,

where C; = pzﬁAf,n+2 A= wlm + 2); 7y 1s a dimensionless distance, measured in the direction normal to the
front; the quantities 8, Ay, m, and « depend on the exponent of compression of the medium n and the 1sentropy

exponent for the detonation products and are found by well-known relations [5].

Using the results of [7, 8], we write the expression for the pressure of the shock plastic wave at the
surface at the instant of reflection in the form

p =pll +g)cos
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where the quantity (1 + q) is the coefficient of reflection for normal incidence; q is determined from the relation
1+ q'1)n =1+4q, Sincen = 1, the value of q = 1 and the coefficient of reflection for the shock plastic wave is
always greater than 2. For sandy soils of broken structure, the values of n are 2,5 to 3.0, and, correspondingly,
the quantity 1 +q = 2,84 to 3.0, which coincides well with the experimental result [9], carried out in sandy soils,
The velocity of the obstacle at the instant of reflection has an effect on the coefficient of reflection, Calcula~
tions show, however, that even in the case of equality of the velocities of the obstacle and of the particles in the
incident wave, the quantity q varies within limits of not more than 10% [8], so that we can neglect the effect of
the velocity of the obstacle,

The velocity of the front and the stress at the front decrease in proportion with the propagation of the
explosion wave, Therefore, a distributed load acts on the plate, the front of which is moving also with a mono-
tonically decreasing velocity. The law of motion of the loading front is found from the relations {5} (see Fig. 1)

1—e

@y = Ly — (maisina), t; = (py/py)"*[aldy (1 — ©)l 7, @)

where p, is the density of the medium; L, is the length of the plate in the direction of the x axis. The time t;
is measured from the instant of motion of the shock front from the plane A;B,, The law of change of pressure
after reflection will be assumed to beinthe form {1 — (t/t;)]5, where s = 1; t is the time, measured from the
instant of reflection; and t; is the time of action of the wave on the plate, The action of the plastic wave on the
plate terminates at the instant when the wall of the cavity AB stops; the law of motion for this has the form

+ [BATH1 4+ mo)] (g + 1) ™, M=),

where X is the dimensionless displacement of the boundary of the cavity; €« is the limiting value of the le-
formation of the medium.

Thus, the function for the normal pressure on the plate at a point with a fixed coordinate is written in the
form

[Po 1+ (/o) 11 — (/1)1 (1 + g)cos @, 1 >0,

pP=
lO, nlzo, .

where pgis the pressure at the wave front at the instant n; = 0.
In the system of coordinates xyz (see Fig, 1), the equation describing the motion of the plate is assumed
to be in the form

pr(0%w/0t?) + Dy*v*w + py = —p(z, 1) when £, >0, 2)

where w and h are the displacement and thickness of the plate; V2 = p2w/0x® + 8°w/9y% D is the cylindrical
rigidity; py and y are the density and Poisson's coefficient for the material; p, is the pressure of the liquid;
and p(x, t) is the loading function, We shall neglect the effect of tangential forces on the motion of the plate
and we shall assume that there are no perturbations ahead of the incident wave front.,

The motion of the plate must satisfy the conditions of immobilization and the initial conditions

w = 0wlot = 0, t; = 0. (3)



When the plate comes into contact with the liquid, then as a result of the motion of the plate, a wave mo-
tion originates in the liquid — a radiation wave, Suppose that ¢ is the velocity potential in the liquid. The
displacements w and ¢ must satisfy the boundary conditions '

dwlot = dpldz, 7 =0, 0L 2 < Ly 4)

Using the hypothesis of plane reflection [10] and condition ), we write the expression for the préssure of the
liquid:

x = Doc(0w/dt), N )]

~ where p, is the density of the liquid and c is the velocity of sound.,

We determine the motion of the plate under the action of a unit step-loading, the front of which is moving
according to the law (1):

1 when x>z,

pla)=H(z—z), H(z— z,) = {0 when 2z <z,

oy = Ly — (mya/sin a).

The expression for the bending of the plate is assumed to be in the form

= mZ;{ n% Fun (8) X (2) Yo (y)s 6)

The functions Xy, (x) and Y, (y) are chosen from a number of fundamental functions, starting from the conditions
of immobilization of the plate at the edges. If the edges are freely supported, then

Xm(x) = sin ﬁmxy Yn(y) = SinYn.l/, (Bm = nm/le Yn = nn/L?)y

where Ly is the dimension of the plate in the direction of the y axis. For fixed edges when x=0 and L, we
have

X () = sinhpz — shApz — gnlcos Az — ch Ayz), (7)
where
gm = (8inu, — shp){cos py — chn), Um = Aply = 2m -+ 1)a/2
is the characteristic number of the function (7) and the root of the equation cosh B COS Hyy -1=0,m=1, 2,

3, ... . A similar expression is taken also for Y,(y) if the edges are fixed when y = 0 and L.

We substitute expressions (5) and (8) in Eq. (2) and we solve it by the Bubnov—=Galerkin method; then,
multiplying it by Xk(x) and Yj(y) and integrating within the limits from 0 to L, and from 0 to L,, we arrive at
the equation

g

2 [‘Skm in (fmn - 9/fmn) - pkm infmn + /ng/PthJ/ :‘ 0,

kR 1

1
T

where 5km ,jn is the Kronecker symbol (1 when m =k, j=n; 0 whenm =k, n = j; m=k,n = j; m = k, n = j);
Q2 is the square of the natural frequency of oscillation of the plate; 2»=pyc/pqh;
Iy Le

Q= | Xu (2)Y; (y)dudy,

xy 0

mk,jn

and the primes denote differentiation with respect to the time fi.
For a freely supported plate we have (during integration k and j are replaced by m and n)

Q2 = D (Bh +v2V/0sh,  Qumn = 2[cos (wmay!Ly) — (— 1)m]
n=1,3,5...; yx=4

H



Fora plate fastened at the edges

Qnin = D[Fpp + 2H o Hos + Frslipth,
Qp; = 4[2(— 1)+ 4 cos hyzy + ch Mz 4 g, (8iD Ry, — sh A, )],

i=1,3,5...; yx=1;
l Mall —(2/p)]  When k=m,
22 (M=) when % =£m,
A whenm =k Imike  mi _ (8)
I ' =1"% T b k - m = odd,
Fmr =1 when m £ k; Hupp ={ Al +AHy

I

' (7";2:‘*' szn) (P + 1) k- m = even.

The expressions for Hy j and F,,; are obtained from Eq. (8) by substitution of the corresponding indices.

nj
Using relation (1), we represent the expression Qk (%) in the form Qk] (t). Then for a freely supported
plate we have the equation

Foun - 2fan + Qnn == [8 (— 1™ ytmnpyh] (cos Aty — 1), 9)
where

s =t —o) A= [(oy/p)"a® (Lisina) /4, (1 — &) 7
We reduce Eq, (9), which satisfies the initial conditions (3), to the form

8 (— 1)m+1

fmn=

S (er:(n—e) r;(h—-e}) (COS AB — 1) das, . (10)

2mnpsh (ro — ry)

where 1y 5 are the roots of the characteristic equation.

In the case of a unit step-loading, moving with constant velocity v, so that x, = vt, and for real values of
ry 5 solution (9) has the form

PR 8 { 1 [ZZAI (e —e) 1 (A (— 1)’") (rle' — e"') + A2 cos Ayt + 281 2KA1 sin Ayt — (;;)m]}, (11)
3

ntmnplh \ra—rny Q2 mn

where A, =mav/L;; A,= Qn—Ap A= A% (2xA,) Puttiﬁg n =0 and X, = vt in Eg. (9), we find the sc” ition
without taking into account the effect of the liquid:

nmnph Q2

Foun = _,_8__“(%21%_ A1 )costnt—i— cosA; t— 7:1)1 } 12)
We shall call the values of the velocity of the wave front, satisfying the condition v = @, L4/mm, the
critical values, It can be seen from Eqs, {11) and (12), with the critical values of the velocity of motion of the
loading front v = vy, that the deflections of the plate have higher values and depend on the magnitude of the
hydrodynamic deformation, It follows from Eq. (12) that in the absence of the deforming effect of the liquid
m=0) and v= Vies the deflections of the plate tend to infinity (similar to the phenomenon of resonance in oscil-
lating systems).

The solutions of Egs. (10)-(12) can be considered like an effect function, and w can be determined by the
action of a loading of arbitrary shape by means of the integral

Ly
Fon = D (@) Fun (20) + | Frum (20 — 2) 9P (2)/02] dz,

where p(xg) is the loading value at the front and p(x) is a function, characterizing the change of loading behind
the front,

Numerical Example. The plate has dimensions of Ly = 200 ¢cm, L, =100 cm, h =1 cm, E = 2-10° kg /em?,
v =0.3, p; = 8°10 ° kg *sec’/cm’, Water is contained in the cavity for which p, = 1,02 - 1078 kg - sec?/cm?, and
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Fig, 3

c=1,5-10° cm/sec. The deflections w are deter mined for a unit step-loading, moving with a constant velocity
v=26-10% 8,76 -10%, and 9 “10* cm/sec, The results of the calculations are shown in Figs, 2 and 3,

Figure 2 shows the changes of deflection wy,,, in a given section of the plate x/L; = 0.8 as a function of
the dimensionless time, Here ts is the time of advance of the loading front from x = Ly to x= 0. The dashed
and solid lines in Fig, 2a correspond to the values n = 3 and 5, the solid lines in Fig, 2b correspond to the
value n = 7, and the dashed curve shows the change of deflection wyy in the section of the plate x/L; = 0.5, with~
out taking account of the effect of the liquid. The scale for this curve is shown on the right. When dete rmining
w without taking into account the effect of the liquid, we can limit ourselves to one term of the seriesm =1
and n = 1 with a high degree of accuracy (the contribution of the other terms of the series is not more than 2%),
Curves 1-4, 6, and 7 in Fig, 2 correspond to the figures m = 1-4, 6, and 7.

The curves in Fig, 3 correspond to deflections w along the length of the plate for certain fixed positions
of the loading front £ = x;/Ly = 0.67; 0.5; and 0. The position of the front is shown by a dashed line. It was
assumed in the calculation that in the direction of the y axis at a length L,, a specified number n of half-waves
is formed, and summation of the series over m was carried out from m =1 to m = 8, The curves 1 in Fig, 3a
correspond to the value n = 3, and the others to the value n = 5; in Fig, 3b the value n = 7 is taken, The solid
lines relate to the velocity v = 6 -10* cm/sec and the dashed and dashed-dot lines relate to the velocities v =
8,76 =10* and 9 -10* ecm/sec,

It can be seen from Fig, 2b (dashed line) that in the absence of liquid in the cavity the deflection of the
plate during the time t, increases monotonically and reaches a magnitude of 0.7 h.

Even if the plate comes into contact with the liquid, the motion of the plate is close to aperiodic and the
magnitude of the deflection is much less than the deflection without taking into account the effect of the liquid,
which is due to the large damping by the liquid, The change of wy,, with time for different modes of m and n
is not identical. The deflections when m = 1 and n= 5 and 7 are generated considerably more rapidly. There-
fore, the appearance can be expected here of deflections with a single half-wave in the direction of the x axis
and several half-waves in the direction of the y axis (m =1, n > 3).

It follows from comparison of the curves 1 in Fig, 2a that the deflection wy; is considerably less than the
magnitude of wy;. The deflection of a plate with the number of half~waves m = 1 and n =1 and 3 must be accom-
panied by large changes in volume of the liquid. Because of the weak compressibility of the liquid, these de-
flections are small. With increase of the number n, the liquid can overflow from one region to another and the
magnitude of W iDCTeases somewhat,



Analysis of the data plotted in Figs, 2 and 3 shows that the magnitude and nature of change of the deflec-
tion of the plate depends on the shape of the wave formation, the position of the loading front, and its velocity.
With increase of velocity v, the deflections decrease,

For t) > ty, assuming Q,, =4, m=1,3,5,...,n=1,3,5, ..., ij=16, k=1, 3, 5,...and j=
1,3, 5,..«, and using the values obtained for wy,, and w‘mn as the starting values, the further change of
deflection can be determined,
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FRACTURE OF CYLINDRICAL SHELLS BY THE ACTION OF
PERIODIC SHOCK WAVES

M, A, Il'gamov and A, V, Sadykov UDC 539,37

It is well-known that in a closed tube, to one end of which is applied a sinusoidal piston movement, non~
linear longitudinal oscillations originate, which in the vicinity of the natural frequencies transform to periodic
shock waves [1-13]. Similar oscillations originate during the unstable operation of the combustion chamber of
engines [14-16], In the experiments carried out up to now, the amplitude achieved 0.36 bar with an average
pressure in the tube of 1 bar {4, 8, 13]. Forced axisymmetrical oscillations of thin-walled shells under the
action of periodic shock waves inside their cavity have been studied in [17]. A relatively good carrying capac~
ity is characteristic of them. This is explained by the fact that the oscillations are accompanied by a pre-
dominantly stretching—compression of the cross-section of the shell. Moreover, experiments were carried
out at frequencies close to the natural frequencies of the gas column wy = kra/L (in order to produce shock
waves in the gas) and axisymmetrical oscillations of the shell Q~ Qo ~ ¢/R remote from the natural frequen-
cies, Here ¢ and c are the propagation velocities of sound in the gas and in the shell; L and R are the total
length of the tube and the radius of the middle surface of the shell,
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